Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets.
نویسندگان
چکیده
To investigate the role of parathyroid hormone (PTH) and(or) an intrinsic renal tubular reabsorptive defect for phosphate in mice with hereditary hypophosphatemic rickets, we performed clearance and micropuncture studies in hypophosphatemic mutants and nonaffected littermate controls. Increased fractional excretion of phosphate in mutants (47.2+/-4 vs. 30.8+/-2% in controls) was associated with reduced fractional and absolute reabsorption in the proximal convoluted tubule and more distal sites. Acute thyropara-thyroidectomy (TPTX) increased phosphate reabsorption in both mutants and controls with a fall in fractional phosphate excretion to congruent with7.5% in both groups indicating that PTH modified the degree of phosphaturia in the intact mutants. Absolute reabsorption in the proximal tubule and beyond remained reduced in the mutants, however, possibly because of the reduced filtered load. Serum PTH levels were the same in intact mutants and normals as was renal cortical adenylate cyclase activity both before and after PTH stimulation. To evaluate the possibility that the phosphate wasting was caused by an intrinsic tubular defect that was masked by TPTX, glomerular fluid phosphate concentration was raised by phosphate infusion in TPTX mutants to levels approaching those of control mice. Phosphate excretion rose markedly and fractional reabsorption fell, but there was no change in absolute phosphate reabsorption in either the proximal tubule or beyond, indicating a persistent reabsorptive defect in the absence of PTH. We conclude that hereditary hypophosphatemia in the mouse is associated with a renal tubular defect in phosphate reabsorption, which is independent of PTH and therefore represents a specific intrinsic abnormality of phosphate transport.
منابع مشابه
Successful Medical Therapy for Hypophosphatemic Rickets due to Mitochondrial Complex I Deficiency Induced de Toni-Debré-Fanconi Syndrome
Primary de Toni-Debré-Fanconi syndrome is a non-FGF23-mediated hypophosphatemic disorder due to a primary defect in renal proximal tubule cell function resulting in hyperphosphaturia, renal tubular acidosis, glycosuria, and generalized aminoaciduria. The orthopaedic sequela and response to treatment of this rare disorder are limited in the literature. Herein we report a long term followup of a ...
متن کاملFibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro.
Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in...
متن کاملFamilial Hypophosphatemic Rickets - A Case Report and Review of Literature
Introduction Familial hypophosphatemic or X-linked hypophosphatemic (XLH) rickets is the most common form of non-nutritional rickets1. The prevalence of XLH rickets yet remain unknown in Bangladesh. It is an Xlinked dominant disorder characterized by renal phosphate wasting with consequent defect of bone mineralization1. Some form of the disease are observed to be transmitted which followed an ...
متن کاملBridging markers defining the map position of X linked hypophosphataemic rickets.
Hypophosphataemic rickets is commonly an X linked dominant hereditary disorder associated with a renal tubular defect in phosphate transport and bone deformities. The gene causing this disorder has been mapped to Xp22.31----p21.3 by using cloned human X chromosome sequences identifying restriction fragment length polymorphisms (RFLPs) in linkage studies of affected families. The hypophosphataem...
متن کاملType 1 Tyrosinemia with Hypophosphatemic Rickets; a Case Report
Background: Tyrosinemia type 1 is an autosomal recessive metabolic disorder, which typically affects liver and kidneys. It is caused by a defect in fumarylacetoacetate hydrolase or fumarylacetoacetase (FAH) enzyme, the final enzyme in the tyrosine degradation pathway. The disease typically manifests as early onset type in early infancy with acute hepatic crisis with hepatomegaly and bleeding te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 63 6 شماره
صفحات -
تاریخ انتشار 1979